NumPy 数组迭代与合并详解


theme: healer-readable highlight: atom-one-dark

NumPy 数组迭代

NumPy 数组迭代是访问和处理数组元素的重要方法。它允许您逐个或成组地遍历数组元素。

基本迭代

我们可以使用 Python 的基本 for 循环来迭代 NumPy 数组。

一维数组迭代:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

for element in arr:
print(element)

二维数组迭代:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

for row in arr:
for element in row:
print(element)

多维数组迭代:

对于更高维度的数组,我们可以使用嵌套循环来迭代每个维度。

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for cube in arr:
for row in cube:
for element in row:
print(element)

使用 nditer() 进行高级迭代

NumPy 提供了 np.nditer() 函数,用于更复杂的迭代操作。它允许您:

指定迭代顺序:order 参数可以是 'C'(行优先)或 'F'(列优先)。 过滤元素:flags 参数可以包含 'filtering''slicing' 等标志,用于过滤元素。 转换数据类型:op_dtypes 参数可以指定迭代过程中元素的数据类型。 使用步长:axesstep 参数可以用于指定迭代步长。

示例:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

迭代每个元素,并将其转换为字符串

for element in np.nditer(arr, op_dtypes=[‘S’]):
print(element)

示例:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

迭代行,跳过第一个元素

for row in np.nditer(arr[:, 1:], flags=[‘slicing’]):
print(row)

示例:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

迭代列,每隔一个元素

for column in np.nditer(arr[:, ::2], flags=[‘slicing’]):
print(column)

使用 ndenumerate() 进行枚举迭代

np.ndenumerate() 函数将每个元素与其索引一起返回。

示例:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

for (row_idx, col_idx), element in np.ndenumerate(arr):
print(f"({row_idx}, {col_idx}): {element}")

练习

使用 NumPy 数组迭代完成以下任务:

  1. 创建一个 3x3 的二维数组,并打印每个元素。
  2. 创建一个 5x5x5 的三维数组,并打印每个元素的坐标和值。
  3. 创建一个 10 个元素的一维数组,并计算数组元素的平均值。
  4. 创建一个 2x2 的二维数组,并将其转置(行列互换)。
  5. 创建一个 3x4 的二维数组,并沿第 1 轴(行)堆叠两个这样的数组。

在评论中分享您的代码和输出。

Sure, here is the requested Markdown formatted content:

NumPy 合并数组

NumPy 提供了多种函数来合并数组,用于将多个数组的内容连接成一个新数组。

合并数组

np.concatenate() 函数用于沿指定轴连接多个数组。

语法:

np.concatenate((arr1, arr2, ..., arrN), axis=None)

arr1, arr2, ..., arrN: 要合并的数组。 axis: 指定连接的轴。默认为 0。

示例:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

合并两个一维数组

arr = np.concatenate((arr1, arr2))
print(arr) # 输出: [1 2 3 4 5 6]

沿行合并两个二维数组

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
arr = np.concatenate((arr1, arr2), axis=1)
print(arr) # 输出: [[ 1 2 5 6]
# [ 3 4 7 8]]

堆叠数组

np.stack() 函数用于沿新轴堆叠多个数组。

语法:

np.stack((arr1, arr2, ..., arrN), axis=None)

arr1, arr2, ..., arrN: 要堆叠的数组。 axis: 指定堆叠的轴。默认为 0。

示例:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

沿第二轴堆叠两个一维数组

arr = np.stack((arr1, arr2), axis=1)
print(arr) # 输出: [[1 4]
# [2 5]
# [3 6]]

沿行堆叠

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
arr = np.stack((arr1, arr2), axis=0)
print(arr) # 输出: [[1 2]
# [3 4]
# [5 6]
# [7 8]]

辅助函数

NumPy 提供了一些辅助函数来方便常见轴上的堆叠操作:

np.hstack():沿水平方向(行)堆叠数组。 np.vstack():沿垂直方向(列)堆叠数组。 np.dstack():沿第三轴(深度)堆叠数组。

示例:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

沿行堆叠

arr = np.hstack((arr1, arr2))
print(arr) # 输出: [1 2 3 4 5 6]

沿列堆叠

arr = np.vstack((arr1, arr2))
print(arr) # 输出: [[1 4]
# [2 5]
# [3 6]]

练习

使用 NumPy 的正确方法,将以下数组 arr1arr2 合并成一个新数组。

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

期望输出: [1 4 2 5 3 6]

在评论中分享您的代码和输出。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注


这是一个从 https://juejin.cn/post/7368637177428492288 下的原始话题分离的讨论话题